Interval Analysis: Unconstrained and Constrained Optimization

نویسنده

  • R. Baker Kearfott
چکیده

INTERVAL ANALYSIS: UNCON-STRAINED AND CONSTRAINED OPTIMIZATION Introduction. Interval algorithms for constrained and un-constrained optimization are based on adaptive, exhaustive search of the domain. Their overall structure is virtually identical to Lipschitz optimization as in [4], since interval evaluations of an objective function φ over an interval vector x correspond to estimation of the range of φ over x with Lipschitz constants. However, there are additional opportunities for acceleration of the process with interval algorithms, and use of outwardly rounded interval arithmetic gives the computations the rigor of a mathematical proof. The interval algorithms are both complicated and accelerated by the presence of constraints, as is explained below. See Interval analysis: Introduction, interval numbers, and basic properties of interval arithmetic for background on interval computations. See [5], [2] or [3] for further details of concepts in this article. The basic problem is

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

What can interval analysis do for global optimization?

An overview of interval arithmetical tools and basic techniques is presented that can be used to construct deterministic global optimization algorithms. These tools are applicable to unconstrained and constrained optimization as well as to nonsmooth optimization and to problems over unbounded domains. Since almost all interval based global optimization algorithms use branch-and-bound methods wi...

متن کامل

Test Results for an Interval Branch and Bound Algorithm for Equality-Constrained Optimization*

Various techniques have been proposed for incorporating constraints in interval branch and bound algorithms for global optimization. However, few reports of practical experience with these techniques have appeared to date. Such experimental results appear here. The underlying implementation includes use of an approximate optimizer combined with a careful tesselation process and rigorous verific...

متن کامل

Combination of interval analysis and PSO for optimization

In this paper, a constrained optimization method for various functions such as non differentiable ones based on interval analysis is proposed. The process can be broken down into two distinct parts: the first one that approximates the space satisfying the constraints and the second one that is exclusively in charge of optimizing a given function. The first phase relies on successive bisections ...

متن کامل

An interval space reducing method for constrained problems with particle swarm optimization

In this paper, we propose a method for solving constrained optimization problems using Interval Analysis combined with Particle Swarm Optimization. A Set Inverter Via Interval Analysis algorithm is used to handle constraints in order to reduce constrained optimization to quasi unconstrained one. The algorithm is useful in the detection of empty search spaces, preventing useless executions of th...

متن کامل

Interval-based global optimization in engineering using model reformulation and constraint propagation

This paper deals with the preliminary design problem when the product is modeled as an analytic model. The analytic models based method aims to use mathematical equations to address both multiphysic and economic characteristics of a product. The proposed approach is to convert the preliminary design problem into a global constrained optimization problem. The objective is to develop powerful opt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009